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We derive a new formula for Franck–Condon harmonic-oscillator overlap integrals us-
ing an algebraic procedure based on a Bogoliubov transformation. We discuss how the
formulation may be generalized to SU(2)-based descriptions of anharmonic oscillator wave
functions.

1. Introduction

Within the Born–Oppenheimer approximation the dipole transition strengths of
absorption or emission of light in a molecule are proportional to the overlap integral
between vibrational states in the ground and excited electronic states. In addition,
for this approximation to be valid, the electronic dipole transition moment must vary
slowly as a function of internuclear distance [12]. Since a vast amount of spectroscopic
measurements in molecules involve the excitation and subsequent de-excitation of elec-
tronic states, the calculation of vibrational overlap integrals is of great interest. A first
approximation for diatomic molecules is to consider both electronic states as harmonic
oscillator potentials. Although this is usually a crude approximation, it constitutes the
starting point for corrections which include anharmonic behavior [6,8]. Several authors
have derived formulas for the harmonic oscillator overlaps using different methods, in-
cluding analytic and generating function approaches, which usually lead to recurrence
relations [2,7,16,21,23,24]. In a recent paper, an algebraic method was used to evalu-
ate the overlap integral in closed form by defining translation and dilatation operators
in terms of the creation and annihilation harmonic oscillator operators [13]. It was
stressed in this work that this derivation can in principle be generalized to anharmonic
Pöschl–Teller and Morse oscillators via the Lie algebra of U(2) [1,3]. A modified
harmonic oscillator formula was subsequently used with great success to describe the
Franck–Condon emission spectrum of S2O [4,10,19,20]. The purpose of this paper is
to present a new algebraic derivation of harmonic-oscillator overlap integrals which
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relies entirely upon the commutator relations for the Weyl–Heisenberg algebra and
which may thus be generalized to anharmonic U(2) overlaps by an appropriate change
in the commutator relations. Although the overlap expression we find is equivalent to
the one derived in [13], the procedure is simpler and better suited for its extension to
the Morse and Pöschl–Teller systems.

In this paper we shall concentrate on the harmonic oscillator case and only indi-
cate the steps required to derive the corresponding result for the U(2) potentials.

The rest of the paper is organized as follows. In section 2 we show that the
dilatation and translation operations on the harmonic oscillator states translate into a
Bogoliubov transformation on the corresponding creation and annihilation operators.
In section 3 we carry out the evaluation of the overlap integrals by applying this
transformation, while in section 4 we describe the procedure to generalize our result
for the anharmonic systems. Finally, in section 5 we present our conclusions.

2. Bogoliubov transformation

Consider two one-dimensional harmonic potentials

V1(x) =
µω2

2
x2, V2(x′) =

µω′2

2
x′2, (1)

where µ is the reduced mass and ω, ω′ the corresponding frequencies. The potentials
are centered on x = 0 and x′ = 0, respectively, where

x′ = x− x0 (2)

and x0 is the displacement between the two. The ground state wave functions for these
potentials are given by

|0〉 =

√
α

π1/2
e−1/2α2x2

, |0〉〉 =

√
α′

π1/2
e−1/2α′2x′2 , (3)

where α ≡ (µω/~)1/2 and we used a double ket to denote the displaced state. The over-
lap integral of these states can be obtained simply by substituting (2) and completing
squares in the exponential. The result is

〈〈0|0〉 =

√
2(ωω′)1/2

(ω + ω′)
exp

[
−µ
2~

ωω′x2
0

(ω + ω′)

]
. (4)

Equation (4) is the only integral that must be evaluated in the algebraic procedure. We
now define creation and annihilation operators for the x and x′ variables,

x =

√
~

2µω

(
a+ a†

)
, x′ =

√
~

2µω′
(
b+ b†

)
, (5)
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where [a, a†] = 1, [b, b†] = 1. From (5) we find

a+ a†=

√
2µω
~

x, (6a)

b+ b†=

√
2µω′

~
x′ =

√
2µω′

~
(x− x0), (6b)

which imply that

b+ b† =

√
ω′

ω

(
a+ a†

)
−
√

2µω′

~
x0. (7)

Likewise, since

∂

∂x
=

√
mω

2~
(
a− a†

)
and

∂

∂x′
=

√
mω′

2~
(
b− b†

)
,

we find

b− b† =

√
ω

ω′
(
a− a†

)
. (8)

Solving (7) and (8),

b= ua+ va† − β′, (9a)

b†= ua† + va− β′, (9b)

where

u =
ω + ω′

2
√
ωω′

, v =
ω′ − ω
2
√
ωω′

, β′ =

√
µω′

2~
x0. (10)

The inverse form of (9) can be readily evaluated:

a= ub− vb† + β, (11a)

a†= ub† − vb+ β, (11b)

where

β =

√
µω

2~
x0. (12)

The transformations (9) and (11) are Bogoliubov (particle-hole) transformations
supplemented by translations by β′ and β, respectively, since

u2 − v2 = 1. (13)

We conclude that this simple transformation connects the states of the displaced
(and dilatated) potentials (1). Since the harmonic oscillator eigenfunctions are mono-
mials in a† (or b†), we exploit this fact in the next section to evaluate closed expressions
for their general overlaps.
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3. Harmonic oscillator overlaps

The states associated to the harmonic oscillator wells (1) are given by

|ν〉 =
1√
ν!

(
a†
)ν |0〉 (14)

and

|ν ′〉〉 =
1√
ν ′!

(
b†
)ν′ |0〉〉. (15)

Our task is thus to evaluate the overlap

〈〈ν ′|ν〉 =
1√
ν!ν ′!

〈〈
0
∣∣bν′(a†)ν ∣∣0〉, (16)

which we can accomplish by substitution of the transformation (9) in (16) and using
a binomial expansion

〈〈ν ′|ν〉= 1√
ν!ν ′!

〈〈
0
∣∣(ua+ va† − β′

)ν′(
a†
)ν∣∣0〉

=

√
ν!
ν ′!

ν′∑
k=0

(−β′)ν′−k
k!(ν ′ − k)!

〈〈
0
∣∣(ua+ va†

)k(
a†
)ν ∣∣0〉. (17)

Before proceeding with the calculation, we require a normal order expansion of the
binomial (ua+ va†)k. This is a simple expansion which has been previously obtained
by other authors [9]. We find the result

(
ua+ va†

)k
=

[k/2]∑
s=0

k−2s∑
t=0

(−)sk!uk−s−tvt

2ss!(k − 2s− t)!t! (a)k−2s−t(a†)t, (18)

substituting back in (17) we obtain a triple sum and the overlap〈〈
0
∣∣(a)k−2s−t(a†)ν+t∣∣0〉 ≡ Ak−2s−t

ν+t , (19)

which we now evaluate by solving a recurrence relation. Applying the a, a† commu-
tation relation we find

Aml =
〈〈

0
∣∣am(a†)l∣∣0〉 =

〈〈
0
∣∣ama†(a†)l−1∣∣0〉

=
〈〈

0
∣∣a†am(a†)l−1∣∣0〉+m

〈〈
0
∣∣am−1(a†)l−1∣∣0〉. (20)

The action on the left of a† on the displaced vacuum |0〉〉 can be evaluated by
means of the inverse transformation (11). Taking the Hermitean conjugate of 〈〈0|a†
we find

a|0〉〉 =
(
ub− vb† + β

)
|0〉〉 =

(
−vb† + β

)
|0〉〉, (21)
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since b|0〉〉 = 0. Applying again relation (9) for b† and solving for a|0〉〉 gives

a|0〉〉 =
(
−ga† + f

)
|0〉〉, (22)

where

g =
v

u
, f =

vβ′ + β

u2 . (23)

Inserting the Hermitean conjugate of (22) in the first term of (20) we readily find the
recurrence relation

Aml = mAm−1
l−1 − gA

m+1
l−1 + fAml−1, (24)

where A0
0 = 〈〈0|0〉 is given by (4). The recurrence relation (24) can be used in

conjunction with (17) and (18) to find to general overlap (16). Although numerical
evaluation of (24) is quite simple, we have also solved it explicitly:

Aml =

[(l−m)/2]∑
j=0

(−)j l!f l−m−2jgj

(l −m− 2j)!2jj!
〈〈0|0〉. (25)

The final result for the overlap is given by

〈〈ν ′|ν〉 =
∑
k,s,t

√
ν ′!
ν!

(−)ν
′−k+s(β′)ν

′−kuk−s−tvt+s

(ν ′ − k)!2ss!(k − 2s− t)!t! Ak−2s−t
ν+t , (26)

where the limits in the sums were defined in (17) and (18). To check our formula we
have compared it with the expression derived in [9], finding full accord.

Formula (26) was arrived at by purely algebraic means through the Bogoliubov
transformations (9) and (10). In the next section we briefly discuss its generalization
to U(2) anharmonic potentials.

4. Anharmonic overlap

It is well known that a number of exactly solvable one-dimensional potentials,
including the Morse and Pöschl–Teller (P.T.) potentials, can be associated to a U(2) al-
gebraic structure [1,3,11]. This fact has been exploited in the description of vibrational
spectra in polyatomic molecules by means of local-mode vibron models that arise from
the coupling of anharmonic U(2) oscillators [4,10,15,19,20,22,25]. This approach has
been very successful in providing accurate fits to energies and transition intensities
in these systems. We refer the reader to the literature for a detailed description of
these methods [4,10,11,14,15,18–20,22,25]. Since the wave functions arising from the
fits are expressed as linear combinations of products of one-dimensional U(2) eigen-
states [4,10,14,15,19–22,25], it is then possible to compute Franck–Condon factors in
polyatomic molecules as linear combinations of products of overlap integrals for each
U(2) oscillator. For this reason it is necessary to evaluate such integrals, in order to
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avoid the computer intensive (and often unstable) calculations associated with overlaps
of Morse (or Pöschl–Teller) wave functions in configuration space [13]. An important
step in this direction was accomplished in [13], where closed Franck–Condon expres-
sions were derived for a “dynamically adapted” harmonic oscillator overlap. The nth
energy level Morse wave function is substituted by a harmonic wave function, where
the frequency and position of the corresponding potential are adjusted to best approx-
imate the Morse potential for each n. Coupled with a U(2)-model fit to the ground
and excited vibrational levels of S2O, the method successfully describes the observed
Franck–Condon emission spectrum in this molecule [17]. This constitutes a computa-
tionally efficient method which opens the way to the study of transition amplitudes in
polyatomic molecules.

In this section we indicate an alternative way to evaluate anharmonic overlaps,
starting from the derivation of the harmonic Franck–Condon factors discussed in the
previous sections.

We begin by introducing an SU(2) algebra[
Ĵ+, Ĵ−

]
= 2Ĵ0,

[
Ĵ0, Ĵ±

]
= ±Ĵ± (27)

and consider a fixed representation j = N/2, where N is an integer. We can now
define the renormalized operators

c =
Ĵ+√
N

, c† =
Ĵ−√
N

, ν̂ =
N

2
− Ĵ0, (28)

which from (27) can be seen to satisfy the commutation relations[
c, c†

]
= 1− 2ν̂

N
,

[
c, ν̂
]

= c,
[
c†, ν̂

]
= −c†, (29)

which are similar to the (Weyl–Heisenberg) harmonic oscillator relations (n̂ = a†a)[
a, a†

]
= 1,

[
a, n̂
]

= a,
[
a†, n̂

]
= −a†, (30)

except for the 2ν̂/N correction in (29). We note that in the limit of N → ∞ we
recover (30). This is the contraction limit of SU(2) to the Weyl–Heisenberg algebra.
The operators (28) have as wave functions the usual |jm〉 states, which we can rewrite
as |Nv〉:

|Nv〉 =

√
Nv(N − v)!

N !v!

(
c†
)v|N0〉, (31)

where N = 2j and v = N/2−m. The matrix elements of c† and c are then given by

〈
Nv + 1

∣∣c†∣∣Nv〉=
√

(v + 1)(1 − v/N ), (32a)〈
Nv − 1|c|Nv

〉
=

√
v

(
1− v + 1

N

)
, (32b)
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which again reduce to the harmonic oscillator results for N → ∞, but that include
corrections for finite N consistent with the anharmonic character of the Morse poten-
tial [5].

To illustrate the connection of these operators with anharmonic potentials, con-
sider the simple Hamiltonian

H =
~ω
2

(
c†c+ cc†

)
. (33)

Using (29) we find the energy eigenspectrum of (33) to be

Eν = ~ω
(
ν + 1/2 − ν2/N

)
, (34)

= ~ωe(ν + 1/2) − ωe
N + 1

(ν + 1/2)2 − ~ω
4N

, (35)

where ωe = (1 + 1/N )ω0. Except for the unimportant constant ~ω/(4N ), this is the
exact form of the Morse spectrum. Child and Halonen [5] have analyzed the coupling
of Morse oscillators and defined the anharmonicity parameter k, which from (35) is
seen to be given by

k = N + 1. (36)

The integer N can be shown to be directly related with the depth and range of the
Morse potential D(1− e−ax)2 by the relation [11]

N + 1 =

(
8µD
a2~2

)1/2

, (37)

where µ is the reduced mass of the diatomic system.
There are other ways to establish the close link between U(2) (or SU(2)) and

the Morse potential [1,3], but perhaps this is a simpler method. Having shown this
correlation, we are now in a position to enumerate the necessary steps for the evaluation
of the U(2) overlaps

INN
′

νν′ = 〈〈N ′ν ′|Nν〉. (38)

The main idea is to substitute in (9), (11), (14) and (15) the SU(2) operators and
states (28) and (31) for their harmonic counterparts. This “anharmonization” must
be carried out before any commutator has been calculated, taking into account the
modified expressions (29). Relation (17) will essentially be preserved for the c and c†

operators, except for the different normalization in (31), but a generalization of (18)
is required for Ĵ+ and Ĵ− and the recurrence relation (24) will have a more complex
form. The procedure, however, can be implemented following the steps used in the
derivation of equation (26). The results and their comparison with numerical results
for Morse and P.T. potentials will be presented in a forthcoming publication.
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5. Conclusions

We have presented a new closed formula for Franck–Condon overlap integrals
for harmonic oscillator states, following a purely algebraic procedure based on the
particle-hole transformations (9) and (11), which relate the creation and annihilation
operators of displaced oscillators with different frequencies. The result depends cru-
cially on formula (18), which is simple to derive by repeated use of the Heisenberg–
Weyl [a, a†] = 1 commutator. In order to generalize this result to the case of SU(2)
operators (28), which are associated to anharmonic potentials, several modifications
are required, including the normal expansion formulas for SU(2) equivalent to (18).
The use of such formulas in conjunction to vibron model molecular structure fits
should contribute to the establishment of an algebraic framework for the evaluation of
Franck–Condon intensities in polyatomic molecules.
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